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ABSTRACT  

This paper presents a framework for target acquisition. The targets of interest are relocatable ground 
vehicles imaged at time t=t0 by a long range targeting sensor and then at a later time t=t1 by a weapon 
platform. The framework must handle several key issues: changes in scene (vehicle movement between t0 
and t1); incorporation of domain knowledge (terrain and vehicle type); image registration errors; 
differences in viewing angle; uncertainty in vehicle type, and location. A modular approach is presented 
in which the key quantities of interest are probability density functions. There are many technical issues 
that must be addressed and two in particular are highlighted: the development of generalisation 
procedures between sensors that enable training data gathered with one sensor to be used to classify data 
obtained from a different RF sensor (specifically, a procedure to enable ISAR data to be exploited); and 
the development of techniques that use prior knowledge from a targeting sensor to aid a weapon seeker 
(the use of targeting information to support acquisition). A Bayesian methodology is adopted and the 
research is set in the target acquisition context. 

1.0 INTRODUCTION 

1.1 Target Acquisition 
This paper is concerned with the classification of relocatable ground vehicles in weapon seeker data. The 
overall aim is to develop techniques for target detection and acquisition using data from sensors that differ 
from the targeting sensors. A Bayesian framework is presented that allows target-specific information 
acquired by additional (different) sensors, together with domain knowledge of terrain and target 
properties, to be exploited within the automatic target recognition (ATR) framework for the weapon 
seeker sensor. There are two sources of additional sensor information that influence the weapon seeker 
classifier.  

1) Targeting data. This is illustrated in Figure 1. A scene of interest is observed at time t0 by a long 
range targeting sensor (e.g. SAR). At a later time, t1, the (evolved) scene is imaged by a weapon 
seeker. The targeting sensor provides prior knowledge as to the nature and location of target data 
that may be exploited in the weapon seeker algorithm.  

2) Classifier training data. One of the main aims is to enable objects imaged by a weapon's seeker to 
be classified using ATR systems trained on more readily available ground-based sensor data. The 
exemplar application used here is to use ATR systems trained on readily available Inverse 
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Synthetic Aperture Radar (ISAR) data to classify objects imaged by a Doppler Beam Sharpened 
(DBS) radar seeker. This is a non-trivial problem since key differences between the measurements 
from different platforms arise from differences in sensor technology, spatial resolution, 
polarisation, frequency, imaging geometry and target motion. 

 

Figure 1: Exploitation of targeting information by a weapon seeker 

Among the many issues that must be addressed are: 

1) Differing imaging geometry between the targeting sensor and the seeker. 

2) Change in the configuration of targets during weapon fly-out (i.e. staleness of the targeting 
information). 

3) Deployment of countermeasures by the targets subsequent to imaging by the targeting sensor. 

4) The difficulty (and expense) of obtaining sufficient training data for a weapon seeker ATR 
system. 

5) Uncertainty in target positions and type. 

6) Image registration errors. 

A particularly adverse effect of items two and three is that a target designated correctly by the targeting 
sensor may have both a different location and an altered signature by the time that the weapon has reached 
the targeted area. This will have a significant effect on the ability of the weapon to engage the pre-selected 
target, especially in typical scenarios where collateral damage must be minimised. 
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1.2 Aim and Outline of paper 
The aim of this paper is to describe a framework for target acquisition that addresses the above issues. 
Two specific technical issues are highlighted:  

1) The development of generalisation procedures between sensors that enable training data gathered 
with one sensor to be used to classify data obtained from a different RF sensor. 

2) The development of techniques that use prior knowledge from a targeting sensor to aid a weapon 
seeker.  

A Bayesian methodology is adopted. The main motivation behind a Bayesian approach is the ability of 
Bayesian statistics to handle limited and possibly conflicting pieces of information in a fully consistent 
manner. Further generic arguments in favour of Bayesian techniques include the ability to cope with 
additional prior information, perhaps elicited from expert knowledge, and the production of confidence 
intervals and other statistics for the parameters of interest.  

Section 2.0 describes the target acquisition framework, with Section 2.1 summarising the technical issues 
that such a framework must handle and Section 2.2 presenting a framework. Section 3.0 describes the 
approaches to the two problems above where data from additional sensors is used in the weapon seeker 
classifier. Finally, we conclude with a summary of the approach. 

2.0 A FRAMEWORK FOR TARGET ACQUISITION 

2.1 Technical Issues 
The following subsections summarise some of the main technical issues that a target acquisition frame-
work must address. 

2.1.1 Uncertainty in Vehicle Type 

There is uncertainty in vehicle type both within the targeting data and the weapon seeker data. This may 
be reduced by using contextual information or prior knowledge, but the decision making process must be 
able to ‘fuse’ both sources of information concerning target type. 

2.1.2 Vehicle Movement 

The target acquisition procedures must be designed to cope with possible changes in target configuration 
during weapon fly-out, and possible distortion of signatures due to the deployment of countermeasures. 
Information that may be exploited includes terrain information, vehicle properties and intelligence 
information. 

2.1.3 Different Sensors 

In many applications of pattern classification, including target recognition, the operating conditions for the 
classifier differ from those used to gather data for training the classifier [6]. Thus, the training conditions 
are not representative of the expected operating conditions. These differences can be due to a number of 
factors. The specific aspect that this programme has addressed is the difference of sensors between 
training and operating conditions. A Bayesian inverse imaging procedure has been developed which 
allows the seeker data to be classified using ATR systems trained on more readily available (and cheaper) 
data from a second sensor (in the exemplar application, an ISAR processor). The sensors differ in range 
and cross-range resolution. By utilising larger amounts of training data covering more varied extended 
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operating conditions, this procedure is likely to lead to an improved autonomous classification ability for 
the weapon seeker, that should enable the seeker to identify and react to changes in the configuration of 
targets during weapon fly-out. 

If the ATR system for the sensor providing the training data has some degree of robustness to 
countermeasures, the proposed seeker ATR system will inherit this robustness, provided that the effects of 
the countermeasures are similar for the two sensors. However, the caveat has to be added that design of an 
ATR system that is robust to countermeasures is a current research area in itself.  

Proposed approaches to target classifier design currently under investigation include Gaussian mixture 
models [3], [5], non-linear dimensionality reduction techniques [9], unsupervised ``symmetry-preserving'' 
neural network techniques [11], [12], and unsupervised encoder networks.  

2.1.4 Platform Motion 

Uncertainties in platform motion lead to additional differences between training and operating conditions. 
The inverse imaging procedure above must take account of this through simultaneous auto-focus/super-
resolution (see Section 3.2.2).  

2.1.5 Different Imaging Geometries 

The imaging geometries between the targeting sensor and the weapon seeker will differ. The scene will be 
observed from different elevations and directions of view. Thus, radar shadow will be different between 
the two measured scenes leading to a possible source of error in the image registration process. 

2.1.6 Registration 

In order to fuse the targeting predictions (estimates of target location and type) with the weapon seeker 
predictions, it is necessary to have a model for the image registration errors. These errors will depend on 
such factors as the position of the targets in the field of view, the imaging geometries, sensor resolution 
and target movement. 

2.1.7 Vehicle Classes 

One of the problems with ATR is the definition of the classes. Vehicles of the same basic type are used for 
different military purposes and therefore the importance of classifying a vehicle correctly depends on its 
role. It is not the decision, but the expected utility of the decision that matters classifier design. Therefore, 
costs of misclassification should be taken into account in the decision making process. The usual criterion 
of error rate as a means of assessing a classifier is deficient in that it treats all misclassifications equally.  

Conversely, vehicles of different type (or the same type with different equipment fits) are used for the 
same military function leading to radar returns that can vary significantly within the class. Designing 
classifiers that are robust to intra-class variability can be an important problem to address. 

2.1.8 Contextual information 

In addition to the information on target type that may be gained from radar measurements of the target, 
further clues as to target type may result from contextual information and domain knowledge. The type of 
contextual information that could be incorporated could include the proximity of other potential targets or 
the type of terrain in which the vehicle is operating. The technical issue to address here is the specification 
of the domain knowledge and the description of a framework that handles such knowledge, together with 
target measurements, in a consistent manner. 
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2.2 Framework 
The overall framework proposed by this programme is outlined in Figure 2. A pragmatic Bayesian 
approach has been proposed in which the various aspects of the problem are treated in a modular fashion, 
with the outcomes of each module being descriptions of probability distributions that can be combined 
under a Bayesian probabilistic formalism. An advantage of the modular approach is that existing 
techniques (such as those developed for registering images from different sensors) can be used where 
appropriate. In particular, the green boxes in Figure 2 relate to processes where we have relied on current 
state-of-the-art techniques with minimal customisation. Since many of these processes require further 
research to provide satisfactory solutions, the formalism is designed in such a manner that new techniques 
can be incorporated as they reach maturity. 

We now consider the main modules in Figure 2 in turn. 

 

Figure 2: Framework for the exploitation of targeting information by a weapon seeker 

2.2.1 Long-range Sensor 

The long-range sensor, depicted as the green box on the left-hand side of Figure 2, captures image data, IL, 
at time t=t0 and processes the data to produce target detections and identifications. This processing may be 
performed manually, or by some semi-automatic process. The output of this process is an estimate of the 
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number of targets present, with their locations and types. This is represented by the probability density 
function, p0(L, C | IL) where L represents the vector of target locations and C represents the vector of target 
classes. This captures the uncertainty in the quantities L and C at time t=t0. 

2.2.2 Prior Evolver 

The prior evolver is used to update the information from the targeting sensor to allow for target motion 
during weapon fly-out. This consists of predicting how the detections gleaned from the targeting sensor at 
t=t0 will have changed by the time t=t1 that the weapon seeker views the targeted area. This evolution of 
the probability density function can be modelled to include bulk motion of targets (perhaps reflecting the 
motion of a convoy) and more complicated behaviour incorporating knowledge of the terrain and likely 
target behaviour. The result of this process is the probability density function, p1(L, C | IL), which is the 
original distribution evolved to time t=t1. Contextual information and domain-specific knowledge can be 
incorporated within this density [4].  

2.2.3 Seeker Sensor 

The seeker sensor box performs a similar operation to the long-range sensor. Image data, IS, is gathered 
using the seeker sensor, this time at time t=t1, and processed to produce p(L, C | IS), the distribution over 
locations and classes of target given the seeker data. Note that in this case, the dimensionality of L and C 
may differ from the long-range sensor case since the seeker detection process may estimate a different 
number of targets to be present. Also, the locations are measured in the seeker frame of reference.  

The on-board classifier that produces the classifications is designed using training data. An approach that 
uses ISAR data to train a classifier that is applied to DBS images is outlined in Section 3.2.2. 

2.2.4 Registration 

Registration of the targeting sensor image, IL, to the frame of reference of the seeker produces a 
translation, with associate errors, expressed as a probability density function.  

2.2.5 Adjust Location PDFs 

The registration information enables the updated targeting information (expressed in the form of 
probability density p1(L, C | IL)) to be adjusted to the seeker frame of reference. This is denoted in the 
figure by the probability density function, p(L, C | IL). 

2.2.6 Prior -> Posterior 

The incorporation of uncertain targeting information, expressed in terms of the probability density 
function p1(L, C | IL), with uncertain seeker detections, described by p1(L, C | IS), occurs in the (blue) box 
labelled ``Prior -> posterior'', and is outlined in Section 3.2. The output of this procedure is the updated 
information (in terms of target class probabilities) for the objects within the seeker frame of reference. 
This information will improve the ability of the weapon to engage the targets designated on launch of the 
weapon while minimising collateral damage. 

3.0 INCORPORATING ADDITIONAL SENSOR INFORMATION 

3.1 Introduction 
The previous section described a framework for target acquisition. A modular approach was proposed in 
which the key quantity of interest was a probability density function. Manipulation of these pdfs by each 
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module resulted in a description of the designated target of interest in the seeker frame of reference. There 
are two main areas where information from different sensors has to be combined or fused. One is where 
the prior targeting information from the long-range sensor is combined with information from the seeker 
(the ‘prior->posterior’ box in Figure 2). This is reported in detail in [1]. The second area is where training 
data from an ISAR sensor is used to train a classifier applied to DBS imagery (the ‘Detections-> 
classifications’ box in the seeker sensor). This is reported in [2] and [8]. The approaches are summarised 
below. 

3.2 Exploiting Targeting Information 

3.2.1 Targeting detections 

The number of targeting sensor detections at time 0t  is denoted by tN . The estimated locations of the 
detections and associated image chips (ID sensor measurements) are denoted by 1 tNl … l, ,  and 1 tNr … r, ,  

respectively. For notational ease, we define ( )i i iT l r= ,  for 1 ti … N= , , .  

Assuming that there are J  possible target classes, the ID sensor measurements are used to obtain J -
dimensional class probability vectors iψ  for each detection, where i jψ ,  is the estimated probability that 

the i -th detection is the j -th class, for 1 ti … N= , ,  and 1j … J= , , . Such class probabilities could be 
estimated using a standard ATR system or possibly via human intervention.  

The measurement errors for the target locations are assigned Gaussian distributions, so that ),(~ txNl Σ  
where x  is the actual target location, and tΣ  is the covariance matrix for the measurement errors. The 
covariance matrix should be determined by considering the sensor performance characteristics along with 
the imaging conditions. 

3.2.2 Seeker detections 

The number of seeker detections at time 1t  is denoted by sN . Since the targeting sensor indicates that 
there are tN  targets present, the threshold for detecting objects within the seeker image is assumed to be 
set so that s tN N≥ . Adaptation of the proposed approach to cope with s tN N<  would be trivial.  

The locations of these seeker detections are denoted 1 sNy … y, , , and the associated image chips (ID sensor 

measurements) are 1 sNz … z, , . For notational ease we define ( )i i iD y z= ,  for 1 si … N= , , .  

It is assumed that density models (conditional on class) can be estimated for the ID measurements. 
Estimating these distributions given only limited training data for the weapon seeker is the subject of 
current research. These distributions can be represented by ( )p z C j| = , where z  is the image chip and 
j  is the index of the class C  of the object. Ideally, each density estimate should incorporate the 

uncertainty in the centre of each detected object. Mixture model densities meet many of the requirements 
for these class-conditional densities.  

In addition to probability densities for target image chips, it is assumed that a probability density has been 
estimated for image chips that correspond to the sort of background noise and clutter that will pass through 
the target detection algorithm. This density is denoted by ( 0)p z C| = .  
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If the class of a target is unassigned, a mixture distribution is used for the ID sensor measurements:  

 0 0
1

( ) ( 0) (1 ) ( )
J

j
j

p z P z C p z C jπ π π
=

= | = + − | =∑  (1) 

where 1 J…π π, ,  represent the prior class probabilities excluding background clutter, and 0π  is the prior 
probability for background clutter. Note that the prior probability for background clutter will be related to 
the false alarm probability of the detection algorithm, rather than the ratio of background clutter to targets. 
This reflects the fact that the initial detection stage will already have eliminated most of the background 
noise.  

The measurement errors for the object locations are assigned Gaussian distributions, so that ),(~ sxNy Σ  
where x  is the actual object location, and sΣ  is the covariance matrix for the measurement errors. As with 
the targeting sensor, the covariance matrix should be determined by considering the sensor performance 
characteristics together with the imaging conditions. Locations of any additional targets and background 
clutter are assumed to be distributed uniformly over the surveyed region. 

3.2.3 Bayesian solution 

The actual classes and locations of the targets detected by the targeting sensor at time 0t  are denoted by 

1( )
tNc … c, ,  and 0 1 0( )

tNx … x, ,, ,  respectively. By time 1t  the new locations are represented by 

1 1 1( )
tNx … x, ,, , . This reflects the fact that the targets may have relocated during the weapon fly-out time 

1 0t t− . The actual classes are of course unchanged. The posterior distribution of interest at time 1t  is:  

 1 1 1 1 1 1( ),
t t t sN N N Np x … x c … c T … T D … D, ,, , , , , | , , , , ,  (2) 

 

the distribution of the locations and types of the targets given seeker and targeting data. In [1], a Bayesian 
technique based on particle filtering [7] is used to obtain samples from the posterior distribution. 

3.3 Generalising Classifiers 
We now turn to the problem of designing a classifier for the seeker (DBS) data. We denote measurements 
in the training (ISAR) conditions by the variable x  and measurements in the operating (DBS) conditions 
by the variable z . We suppose that we have a training set },,1,{ NixD i K==  of samples gathered under 
the training conditions.  This training set is used to design a Bayesian classifier (i.e. a classifier based on 
probability distributions for the sensor measurements) [10], which outputs posterior class probabilities for 
each ISAR measurement of an object to be classified.  The posterior class probabilities estimated by the 
classifier for an ISAR measurement x  are denoted by ),|( DxjCp = , for Jj ,,1K=  where J  is the 
number of target classes. 

In accordance with our operational scenario, during operational use we only have access to a DBS 
measurement z  (rather than the ISAR measurement x ) so cannot use the Bayesian classifier directly.  To 
proceed we require a model )|( zxp  for the relationship between an operational sensor measurement and a 
training sensor measurement. Then, we can consider the expectation of the posterior class probabilities 
given the operational sensor measurement: 
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  ∫ === dxzxpDxjCpzDxjCpE )|(),|(]|),|([       (3) 

In this manner, given a model for the conditional density )|( zxp  we can use the training sensor classifier 
to classify an operational sensor measurement.   
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Figure 3: Imaging framework 

We assume a radar sensor measurement process as shown in Figure 3.  

For the specified sensor measurement processes, the conditional density )|( zxp  can be expressed as:  

)|()|()|,()|( zpxpdzxpdzxp σσσσσ ∫∫ ==      (4) 

The term )|( σxp  represents the forward sensor measurement process for the training sensor, i.e. 
generation of a training sensor image from an underlying cross section σ  (temporarily suppressing the 
defocus parameters within our notation). The term )|( zp σ  is the restored cross section given the 
operational sensor measurement. Determination of )|( zp σ corresponds to a super-resolution problem. 

Thus, Equation (4) states that to find the distribution of ISAR measurements that correspond to a DBS 
image, z , we find the distribution of underlying cross sections, σ , that give rise to z , and then pass these 
through an ISAR imaging model. The resulting conditional distribution, )|( zxp , is then substituted into 
(3) to classify z . Since (3) cannot be evaluated analytically for the majority of sensor models, samples are 
drawn from the relevant posterior distributions and inference is based on those samples. In [8], a Bayesian 
approach to simultaneous auto-focus/super-resolution is described. In [2] results of this classification 
procedure on synthetic data are presented. 

4.0 SUMMARY 

This paper has described a framework for target acquisition that has the following features 

1) It presents a modular approach in which the key quantities of interest passed between modules are 
probability density functions; 

2) It handles uncertainty in target locations and classes; 

3) Prior targeting information is combined with seeker data in a consistent manner; 

4) A classifier trained on ISAR data may be used to provides estimates of target type for DBS data 
using a Bayesian auto-focus/super-resolution approach; 

σ  Scattering cross section 

f  Scattered field 

θ  Defocus parameters 
g  Image - either x for ISAR 

or z for DBS 
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5) Knowledge of the properties of vehicle and terrain type may be included in a ‘prior evolver’; 

6) Registration errors are treated probabilistically. 

The approaches to two particular aspects of the target detection problem have been outlined, namely 

1) the combination of prior targeting data with seeker detections to produce posterior estimates of 
target locations and classes; 

2) the use of a previously trained classifier on data recorded from a different sensor. 
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